Adaptive, locally linear models of complex dynamics
نویسندگان
چکیده
منابع مشابه
Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملAdaptive Varying-coefficient Linear Models
Varying-coefficient linear models arise from multivariate nonparametric regression, nonlinear time series modelling and forecasting, functional data analysis, longitudinal data analysis, and others. It has been a common practice to assume that the vary-coefficients are functions of a given variable which is often called an index. A frequently asked question is which variable should be used as t...
متن کاملAdaptive linear models for regression
The general setting of regression analysis is to identify a relationship between a response variable Y and one or several explanatory variables X by using a learning sample. In a prediction framework, the main assumption for predicting Y on a new sample of X observations is that the regression model Y = f(X) + ǫ is still valid. Unfortunately, this assumption is not always true in practice and t...
متن کاملExtracting the Globally and Locally Adaptive Backbone of Complex Networks
A complex network is a useful tool for representing and analyzing complex systems, such as the world-wide web and transportation systems. However, the growing size of complex networks is becoming an obstacle to the understanding of the topological structure and their characteristics. In this study, a globally and locally adaptive network backbone (GLANB) extraction method is proposed. The GLANB...
متن کاملImproved Locally Linear Embedding by Using Adaptive Neighborhood Selection Techniques
Unsupervised learning algorithm locally linear embedding (LLE) is a typical technique which applies the preserving embedding method of high dimensional data to low dimension. The number of neighborhood nodes of LLE is a decisive parameter because the improper value will affect the manifold structure in the local neighborhood and lead to the lower computational efficiency. Based on the fact that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2019
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1813476116